FORMULARS

YOU ARE WELCOME TO


Dimixywap.com









STEPS ON HOW TO

There are different steps on how to solve a quadratic equation.

1. Using Factorization Method
2. Using Formula Method
3. Using Completing the Square Method
4. And about all using Dimixykrrish


STEPS ON HOW TO SOLVE QUADRATIC EQUATION BY FACTORIZATION METHOD
Example: x2 + 5x – 6 = 0
Step 1: Firstly note the coefficient of x2
            Coefficient = 1
Step 2: Find the product (the multiplication of the coefficient of x2 and the constant)
            Product = 1 x - 6
Step 3: Note the sum
            Sum = +5
Step 4: Then find the factors (two numbers multiplied together to give the product; -6 and when
            Summed gives the Sum; +5)
            Factors = 6 and -1
Step 5: Write the equation, replacing the sum with the factors
            x2 + 6x – x – 6
Step 6: Group them into two
            ( x2 + 6x) – (x – 6)
Step 7: Find the common factors of each expression in the bracket
            Common factors = x and -1 respectively.
Step 8: Put the common factors outside the bracket of their respective expression
            x (x + 6) – 1 (x + 6)
            Note: (Be careful of the signs here and also note this whenever you find out that the two numbers inside the bracket are not the same then you are not correct and you need to start all over again)
Step 9: Pick one of the expressions in the bracket (since both of them in the bracket are the
            same) and the ones outside the bracket.
Note: Be careful of the signs at this stage
(x + 6) (x – 1)
Step 10: Equate the expressions to zero
            (x + 6) (x – 1) = 0
Step 11: Then equate each of the expression to zero
            x+ 6 = 0 or x – 1 = 0
Step 12: Take the constant to the other side across the equal sign (=)
            Note: Performing this task the sign changes
            x = -6 or x = 1
Step 13: Make x the subject of the formulae (by dividing both sides with the coefficient of x at
            that moment)
            x   =  6   or x  = 1
                     1              1
Step 14: Express the root as x, x1
            -6, 1 (ANSWER)





STEPS ON HOW TO SOLVE QUADRATIC EQUATION BY FORMULA METHOD
Example: 2x2 + 3x – 5 = 0
Step 1: Write down the formula
            -b+-√b2 – 4ac
                     2a
Step 2: Write down the values of the alphabet indicated in the formula from the equation. i.e.
            (a = coefficient of x2, b = coefficient of x and c = constant)
            a = 2, b = 3 and c = -5
Step 3: Replace the alphabet with the values respectively
            Note: Be careful of the signs as they change
            -3+-√32 – 4 x 2 x -5
                     2 x 2
Step 4: Evaluate it (Be careful of signs)
            -3+-√9 + 40
                     4
            -3+-√49
                  4
            -3+-7
               4

Step 5: Split the evaluated value into two, (one carries the positive sign, while the other carries the negative sign)
-3 + 7   or  -3 - 7
                 4               4
Step 6: Evaluate each of the expression (Be careful of the signs)
            4    or  -10
            4           4
Step 7: Divide to the minimum
            1 or -5
Step 8: Write the roots as x, x1
            1, -5   (ANSWER
                 2 



STEPS ON HOW TO SOLVE QUADRATIC EQUATION BY COMPLETING THE SQUARE METHOD
Example: 2x2 + 5x +3 = 0
Step 1: Divide through by the coefficient of x2 i.e. (2)
2x2 + 5x+ 3 = 0
2        2    2     2
Step 2: Evaluate it
            x2 + 5x + 3 = 0
                   2      2
Step 3: Take the constant across the equal (=) sign
            Note: The sign changes
            x2 + 5x =  -3
                    2       2
Step 4: From the left side (Multiply it by half, take off the square from the x2 and put it outside
            the bracket and subtract the square from it)
            (x + 5) 2 x  1    5  2  =  -3
                    2        2      4          2
                   
Step 5: Evaluate it
             (x + 5 ) 2    25  =  -3
                   4          16       2
Step 6: Try making x the subject by taking all constants to the other side
             (x + 5) 2  =  -3  + 25
                   4            2     16
Step 7: Evaluate the right side (the denominator is 16)
            (x + 5) 2   = -24 + 25
                   4               16
            (x + 5 ) 2  = 1
                   4          16
Step 8: Take the square of both sides
  √x + 5 2     =  1
                      4             16
            x + 5 =   +-1
                  4        4
Step 9: Make x the subject of the formula
            x =  - 5 +-1
                     4     4
Step 10: Evaluate it
            x = -5 +-1
                      4 
Step 11: Split the evaluated value into two, (one carries the positive sign, while the other carries
            the negative sign)
            x = -5 + 1    or  x = -5- 1
                      4                       4
Step 12: Evaluate it
            x = -4    or  x = -6
                   4                4
         x = - 1  or  x = - 3
Step 13: Write the roots as x, x1
            1,  -3   (ANSWER)

No comments:

linkwithme.com

Related Posts Plugin for WordPress, Blogger...